metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C10.14C25, C20.49C24, D10.8C24, D20.41C23, Dic5.9C24, Dic10.41C23, C4○D4⋊19D10, (C2×D4)⋊47D10, (C2×Q8)⋊36D10, (D4×D5)⋊13C22, (C22×C4)⋊34D10, (C2×C10).5C24, D4⋊8D10⋊13C2, D4⋊6D10⋊11C2, (Q8×D5)⋊15C22, C2.15(D5×C24), C4.46(C23×D5), C5⋊D4.2C23, C4○D20⋊27C22, (C2×D20)⋊65C22, (D4×C10)⋊54C22, C5⋊1(C2.C25), (Q8×C10)⋊47C22, (C4×D5).74C23, (C5×D4).30C23, D4.30(C22×D5), (C5×Q8).31C23, Q8.31(C22×D5), D4⋊2D5⋊14C22, (C2×C20).568C23, Q8.10D10⋊9C2, (C22×C20)⋊29C22, Q8⋊2D5⋊14C22, D4.10D10⋊13C2, C22.10(C23×D5), (C2×Dic10)⋊76C22, C23.142(C22×D5), (C22×C10).250C23, (C2×Dic5).168C23, (C22×D5).142C23, (D5×C4○D4)⋊6C2, (C2×C4○D4)⋊15D5, (C2×C4×D5)⋊35C22, (C10×C4○D4)⋊16C2, (C2×C4○D20)⋊39C2, (C5×C4○D4)⋊22C22, (C2×C5⋊D4)⋊55C22, (C2×C4).646(C22×D5), SmallGroup(320,1621)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10.C25
G = < a,b,c,d,e,f | a10=b2=c2=e2=f2=1, d2=a5, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=a5b, cd=dc, ece=a5c, cf=fc, de=ed, df=fd, ef=fe >
Subgroups: 2414 in 810 conjugacy classes, 443 normal (17 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, D5, C10, C10, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C4○D4, C2×C4○D4, 2+ 1+4, 2- 1+4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C10, C2.C25, C2×Dic10, C2×C4×D5, C2×D20, C4○D20, D4×D5, D4⋊2D5, Q8×D5, Q8⋊2D5, C2×C5⋊D4, C22×C20, D4×C10, Q8×C10, C5×C4○D4, C2×C4○D20, D4⋊6D10, Q8.10D10, D5×C4○D4, D4⋊8D10, D4.10D10, C10×C4○D4, C10.C25
Quotients: C1, C2, C22, C23, D5, C24, D10, C25, C22×D5, C2.C25, C23×D5, D5×C24, C10.C25
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 23)(2 22)(3 21)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(41 65)(42 64)(43 63)(44 62)(45 61)(46 70)(47 69)(48 68)(49 67)(50 66)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 11)(10 12)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 71)(67 72)(68 73)(69 74)(70 75)
(1 48 6 43)(2 49 7 44)(3 50 8 45)(4 41 9 46)(5 42 10 47)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 66 26 61)(22 67 27 62)(23 68 28 63)(24 69 29 64)(25 70 30 65)(31 76 36 71)(32 77 37 72)(33 78 38 73)(34 79 39 74)(35 80 40 75)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 11)(10 12)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,23)(2,22)(3,21)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,48,6,43)(2,49,7,44)(3,50,8,45)(4,41,9,46)(5,42,10,47)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,23)(2,22)(3,21)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,71)(67,72)(68,73)(69,74)(70,75), (1,48,6,43)(2,49,7,44)(3,50,8,45)(4,41,9,46)(5,42,10,47)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,66,26,61)(22,67,27,62)(23,68,28,63)(24,69,29,64)(25,70,30,65)(31,76,36,71)(32,77,37,72)(33,78,38,73)(34,79,39,74)(35,80,40,75), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,23),(2,22),(3,21),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(41,65),(42,64),(43,63),(44,62),(45,61),(46,70),(47,69),(48,68),(49,67),(50,66),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,11),(10,12),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,71),(67,72),(68,73),(69,74),(70,75)], [(1,48,6,43),(2,49,7,44),(3,50,8,45),(4,41,9,46),(5,42,10,47),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,66,26,61),(22,67,27,62),(23,68,28,63),(24,69,29,64),(25,70,30,65),(31,76,36,71),(32,77,37,72),(33,78,38,73),(34,79,39,74),(35,80,40,75)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,11),(10,12),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80)]])
74 conjugacy classes
class | 1 | 2A | 2B | ··· | 2H | 2I | ··· | 2P | 4A | 4B | 4C | ··· | 4I | 4J | ··· | 4Q | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10R | 20A | ··· | 20H | 20I | ··· | 20T |
order | 1 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 2 | ··· | 2 | 10 | ··· | 10 | 1 | 1 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
74 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | D10 | D10 | C2.C25 | C10.C25 |
kernel | C10.C25 | C2×C4○D20 | D4⋊6D10 | Q8.10D10 | D5×C4○D4 | D4⋊8D10 | D4.10D10 | C10×C4○D4 | C2×C4○D4 | C22×C4 | C2×D4 | C2×Q8 | C4○D4 | C5 | C1 |
# reps | 1 | 6 | 6 | 2 | 8 | 4 | 4 | 1 | 2 | 6 | 6 | 2 | 16 | 2 | 8 |
Matrix representation of C10.C25 ►in GL6(𝔽41)
40 | 7 | 0 | 0 | 0 | 0 |
34 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
7 | 34 | 0 | 0 | 0 | 0 |
1 | 34 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 37 | 0 |
0 | 0 | 20 | 0 | 40 | 40 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 21 | 40 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 37 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 20 | 1 | 0 | 40 |
0 | 0 | 20 | 1 | 40 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 37 | 0 |
0 | 0 | 0 | 0 | 40 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 37 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 |
G:=sub<GL(6,GF(41))| [40,34,0,0,0,0,7,7,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[7,1,0,0,0,0,34,34,0,0,0,0,0,0,40,20,0,21,0,0,0,0,0,40,0,0,37,40,1,1,0,0,0,40,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,20,20,0,0,37,40,1,1,0,0,0,0,0,40,0,0,0,0,40,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,37,40,1,1,0,0,0,1,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,37,40,1,1,0,0,0,0,0,1,0,0,0,0,1,0] >;
C10.C25 in GAP, Magma, Sage, TeX
C_{10}.C_2^5
% in TeX
G:=Group("C10.C2^5");
// GroupNames label
G:=SmallGroup(320,1621);
// by ID
G=gap.SmallGroup(320,1621);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,570,1684,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^10=b^2=c^2=e^2=f^2=1,d^2=a^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=a^5*b,c*d=d*c,e*c*e=a^5*c,c*f=f*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations